// HALBORN

Wigwam - Browser

Extension Wallet
WebApp Pentest

Prepared by: Halborn
Date of Engagement: December 6th, 2023 - December 18th, 2023
Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY

CONTACTS

1

3.2

EXECUTIVE OVERVIEW

INTRODUCTION

ASSESSMENT SUMMARY

SCOPE

TEST APPROACH & METHODOLOGY

RISK METHODOLOGY

ASSESSMENT SUMMARY & FINDINGS OVERVIEW
FINDINGS & TECH DETAILS

(HAL-@1) UNENCRYPTED MNEMONIC PHRASE IN-MEMORY -
Description

Proof of Concept

CVSS Vector

Risk Level

Recommendation

References

Remediation Plan

(HAL-@2) UNENCRYPTED USER PASSWORD IN-MEMORY -
Description

Proof of concept

CVSS Vector

Risk Level

Recommendation

10

11

11

13

14

16

16

17

18

18

18

19

19

20

20

20

24

24

24

3.3

3.4

3.5

3.6

Remediation Plan

(HAL-03) PLAIN TEXT CONNECTIONS OVER HTTP - MEDIUM
Description

Code Location

CVSS Vector

Risk Level

Recommendation

Remediation Plan

(HAL-04) LACK OF USER INPUT SANITATION - MEDIUM
Description

Proof of Concept

CVSS Vector

Risk Level

Recommendation

Remediation Plan

(HAL-05) PACKAGES WITH KNOWN VULNERABILITIES - MEDIUM
Description

CVSS Vector

Risk Level

Recommendation

Remediation Plan

(HAL-06) EXCESSIVE TIME FOR WALLET AUTO-LOCK - MEDIUM
Description

Code Location

CVSS Vector

Risk Level

25

26

26

26

28

28

28

28

29

29

29

32

32

32

33

34

35

35

35

35

36

36

36

36

37

3.7

3.8

3.9

Recommendation

Remediation Plan

(HAL-07) INSECURE AUTHENTICATION METHODS - LOW

Description
Proof of Concept
CVSS Vector

Risk Level
Recommendation

Remediation Plan

(HAL-08) LACK OF DEFAULT CLAUSE ON SWITCH STATEMENT - LOW

Description

Source Code Snippets

CVSS Vector

Risk Level

Recommendation

Remediation Plan

(HAL-09) OLD PASSWORD RE-USAGE - LOW
Description

Proof of Concept

CVSS Vector

Risk Level

Recommendation

Remediation Plan

(HAL-10) BROKEN LINKS - INFORMATIONAL

Description

Proof of Concept

37

37

38

38

38

38

38

39

39

40

40

40

55

56

56

56

57

57

57

58

58

58

59

60

69

60

4.1

CVSS Vector
Risk Level
Recommendation
Remediation Plan
PERFORMED TESTS
STATIC ANALYSIS
Description
NodeJSScan

SonarQube

61

61

61

61

62

63

63

63

65

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE
0.1 Document Creation 12/15/2023
0.2 Draft Review 12/22/2023
0.3 Draft Review 12/22/2023
1.0 Remediation Plan 01/10/2024
1.1 Remediation Plan Review 01/10/2024
1.2 Remediation Plan Review 01/11/2024
1.3 Remediation Plan Modification 01/12/2024
1.4 Remediation Plan Review 01/12/2024
1.5 Remediation Plan Review 01/13/2024
1.6 Remediation Plan Modification 01/15/2024

CONTACTS

CONTACT COMPANY EMAIL
Rob Behnke Halborn Rob.Behnke@halborn.com
Steven Walbroehl Halborn Steven.Walbroehl@halborn.com
Gabi Urrutia Halborn Gabi.Urrutia@halborn.com
David Manzano Halborn David.Manzano@halborn.com
Erlantz Saenz Halborn Erlantz.Saenz@halborn.com

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:David.Manzano@halborn.com
mailto:Erlantz.Saenz@halborn.com

EXECUTIVE OVERVIEW

EXECUTIVE OVERVIEW

1.7 INTRODUCTION

Wigwam engaged Halborn to conduct a security assessment on their web
application, beginning on December 6th, 2023 and ending on December
18th, 2023 . The security assessment was scoped to the Wigwam Wallet
browser extension. Halborn was provided access to dev branch of the
GitHub repository of the Wigwam Wallet to conduct a security testing in
the application and reporting the findings at the end of the engagement.

https://github.com/wigwamapp/local-wigwam

EXECUTIVE OVERVIEW

1.2 ASSESSMENT SUMMARY

The team at Halborn was provided two weeks for the engagement and assigned
a full-time security engineer to verify the security of the Wigwam Wallet
application. The security engineer is a penetration testing expert with
advanced knowledge in web, recon, discovery & infrastructure penetration

testing and blockchain and smart-contracts security.

The purpose of this assessment is to:

®* Improve the security of the application by testing it both as white
and black-box approaches

® Identify potential security issues that could be affecting the web
application

In summary Halborn did not identify any critical issues but found some
security risks, including two HIGH, four MEDIUM, and three LOW issues.
It was possible to leak the mnemonic phrase from the memory dump, as well
as the users’ password under different scenarios.

Moreover, it was detected that Wigwam wallet was using plaintext connec-
tions over HTTP in several snippets of the source code. Other than that,
the auto-lock period of time for automatically locking the wallet was set
up to a very high value of time.

Some vulnerable dependencies were being used by Wigwam wallet.

Finally, it was possible to set up the same old password as the new one,
allowing the users to re-use the same password.

Finally, the Wigwam team successfully addressed all the above-mentioned

issues.

EXECUTIVE OVERVIEW

1.3 SCOPE

Wigwam Wallet browser extension from Chrome Store:
® Chrome Store URL (version 1.7.2 and the earlier)
Wigwam Wallet source code:

® URL: GitHub repository of the WigWam Wallet

®* Environment: dev branch.

Commit: 31618e9a64ab8d584f2997743cca3f17b745cbheb

® GitHub commit files: https://github.com/wigwamapp/
local-wigwam/tree/31618e9a64ab8d58412997743cca3f17b745cbe5

10

https://chromewebstore.google.com/detail/wigwam-%E2%80%94-web3-wallet/lccbohhgfkdikahanoclbdmaolidjdfl?hl=en
https://github.com/wigwamapp/local-wigwam
https://github.com/wigwamapp/local-wigwam/tree/31618e9a64ab8d584f2997743cca3f17b745cbe5
https://github.com/wigwamapp/local-wigwam/tree/31618e9a64ab8d584f2997743cca3f17b745cbe5

EXECUTIVE OVERVIEW

1.4 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing
to balance efficiency, timeliness, practicality, and accuracy in regard
to the scope of this assessment. While manual testing is recommended
to uncover flaws in logic, process and implementation; automated testing
techniques help enhance coverage of the code and can quickly identify
items that do not follow security best practices.

The following phases and associated tools were used throughout the term
of the assessment:

®* Mapping Application Content and Functionality

®* Technology stack-specific vulnerabilities and Code Assessment

®* Known vulnerabilities in 3rd party / 0S dependencies

® Application Logic Flaws

® Authentication / Authorization flaws

®* Input Handling

® Fuzzing of all input parameters

®* Testing for different types of sensitive information leakages: mem-
ory, clipboard,

® Test for Injection (SQL/JSON/HTML/JS/Command/Directories. . .)

® Brute Force Attempts

® API testing and rate-limiting testing

® Perform static analysis on code

®* Ensure that coding best practices are being followed by Wigwam team

®* Technology stack-specific vulnerabilities and code assessment

¢ Identify other potential vulnerabilities that may pose a risk to
Wigwam

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk
assessment methodology by measuring the LIKELIHOOD of a security incident
and the IMPACT should an incident occur. This framework works for commu-
nicating the characteristics and impacts of technology vulnerabilities.

11

EXECUTIVE OVERVIEW

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

- N w h~ O
|

Almost certain an incident will occur.

High probability of an incident occurring.

Potential of a security incident in the long term.

Low probability of an incident occurring.

Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

- N W »~ O
|

The

May

May

May

May

May

cause devastating and unrecoverable impact or loss.
cause a significant level of impact or loss.

cause a partial impact or loss to many.

cause temporary impact or loss.

cause minimal or un-noticeable impact.

risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

10 - CRITICAL

9_

7
5 -
3

- h O @

HIGH

MEDIUM

LOW

VERY LOW AND INFORMATIONAL

12

EXECUTIVE OVERVIEW

IMPACT

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL

HIGH

0

LIKELIHOOD

(HAL-01)

(HAL-02)

13

EXECUTIVE OVERVIEW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) UNENCRYPTED MNEMONIC

PHRASE IN-MEMORY I

(HAL-02) UNENCRYPTED USER PASSWORD

IN-MEMORY S

(HAL-03) PLAIN TEXT CONNECTIONS
OVER HTTP

(HAL-04) LACK OF USER INPUT
SANITATION

(HAL-05) PACKAGES WITH KNOWN
VULNERABILITIES

(HAL-06) EXCESSIVE TIME FOR WALLET
AUTO-LOCK

(HAL-07) INSECURE AUTHENTICATION
METHODS

(HAL-08) LACK OF DEFAULT CLAUSE ON
SWITCH STATEMENT

(HAL-09) OLD PASSWORD RE-USAGE

(HAL-10) BROKEN LINKS ACKNOWLEDGED

14

FINDINGS & TECH
DETAILS

FINDINGS & TECH DETAILS

3.1 (HAL-01) UNENCRYPTED MNEMONIC
PHRASE IN-MEMORY -

Description:

The Mnemonic Phrase of the wallet remained unencrypted in memory. As a
result, an attacker who compromised the user’s machine could exfiltrate
and steal the Mnemonic Phrase.

It was possible to retrieve the Mnemonic Phrase from memory in the
following scenario:

®* When creating the wallet, it was possible to dump the mnemonic from

memory .

It was NOT possible to retrieve the Mnemonic Phrase from memory in the
rest of the scenarios, including but not being limited to:

® Revealing the mnemonic after having logged in.

®* With a locked wallet.

®* Downloading the mnemonic from the download button as file.

When recovering a wallet by copying the mnemonic and pasting it
directly to the browser extension.

It is important to note that the mnemonic could be leaked into memory not
only by the application state, but by the browser displaying the mnemonic

in clear text.

The severity of this vulnerability has been lowered from “Critical”,
since the Mnemonic Phrase was not present in the memory from the start-up
of the application.

16

FINDINGS & TECH DETAILS

Proof of Concept:

3 Windows10_x64

C) NG
N C QG A) K
O/ ¢ A N NOICO/C DN
CDIN TN CINRCCON SR O/ (D)
RS (GO (R G CCRVENGE R (CE)E) NN
A/ | S SN | oy e,] |] S| |
/8 /0 /615y 1 2 [=S O A Gl
7 | S| SR [0N | 8\ S | B\ S |

AWMLY MNEMONIC PHRASE POSSESSION \\AWAALNLL

[INFO] (3) potential Mneomenic Phrase has been found !

[Mnemonic Phrase] promote add deputy task ask boy swim blood gas mean express now
[Mnemonic Phrase] junior plate mad attend quit style wolf always affair loyal lamp pave
[Mnemonic Phrase] ask boy swim blood gas mean express now junior plate mad attend

press any key to exit the process. ..

PS C:\Users\halborn\Desktop>

Figure 1: Unencrypted Mnemonic Phrase in-memory, using Demonic.exe

* “h1

Change profile

Perfil 1

Password

Unlock

Forgot the password?
Want to sign in to another profile?

WV Wigwam

17

FINDINGS & TECH DETAILS

636970 "m.hola”,

636971 "m.pizza"”,

636972 "m.resist”,

636973 "m.skull™,

626974 “(constant elements)™,

636975 "(constant pool)™,

636976 "system / BytecodeArray”,

636977 "system / TransitionArray",

636978 "radix-:r6:",

636979 "position: relative !important;\n padding-left: Bpx;\n padding-top: @px;\n padding-right: @px;\n
margin-top:@;\n margin-right: @px !important;\n _

636986 “w-full mx-auto max-w-4x1 flex items-stretch”,

636981 "system / Foreign®,

636982 "extensions::SafeBuiltins”,

636983 "mr-2 transition-transform group-hover:-translate-x-1.5 group-focus:-translate-x-1.5",

636984 "absolute inset-® z-[-5] rounded-[2.5rem] overflow-hidden bg-brand-dark/10 backdrop-blur-[3@px]",

636985 "system / StoreHandler”,

636986 "w-full text-center select-none mb-12",

636987

636988 gartist-vote-give-twist:brick-volcano-liquid-private-dynamic-when-seat-accuscjys

636989 "push.13836",

636990 "n.d.body",

636991 “ir8:,

636992 "n.d.hair"”,
636993 "o.open™,
636994 "o.s5leep”,
636995 “o.wink™,
636996 "po.glasses",
636997 "o.happy”,
636998 "p.sunglasses™,
636999 "a.long”,
637000 "a.sideShave"”,
637601 “a.bobCut™,
637002 "a.curly”,
637003 “a.pigtails™,
£23700A T conTuBon™

Figure 2: Unencrypted Mnemonic Phrase in-memory, after creating the
wallet

CVSS Vector:

® CVSS:3.1/AV:P/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H

Risk Level:

Likelihood - 4
Impact - 5

Recommendation:

This vulnerability was caused by the application processing sensitive
data as plain text. For that reason, it is recommended to save the
entropy on disk instead of the mnemonic. In cases where the mnemonic
needs to be used in the code, it is recommended to break it up into
several variables, or even better, obfuscate the original phrase and
then deference the variable which used to hold the original phrase. In

18

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:P/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H

FINDINGS & TECH DETAILS

the cases where handling the Mnemonic Phrase is needed, it is better to
use the obfuscated variable along with a function that would reconstruct
the original Mnemonic Phrase at the exact point where it is needed.
Other than that, when the wallet is in a locked state, the mnemonic
phrase should be cleared out from memory.

During wallet creation and the revealing of the mnemonic once the user
has logged in, it is recommended to display the mnemonic phrase in an
HTML5 canvas. This would be difficult to copy it, which allows the
mnemonic to be leaked into memory through the clipboard. In any case, it
is generally recommended not to allow users to copy the whole mnemonic
from the extension, as that may cause a leakage from the clipboard.

References:

®* CWE-316: Cleartext Storage of Sensitive Information in Memory
®* CVE-2022-32969

® Halborn Demonic

Remediation Plan:

SOLVED: Wigwam Team solved this issue in the following commit 1ID:
af2f322c83f3d14d27f956c99f6b1bacd85674c9

19

https://cwe.mitre.org/data/definitions/316.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32969
https://www.halborn.com/disclosures/demonic-vulnerability
https://github.com/wigwamapp/local-wigwam/tree/af2f322c83f3d14d27f956c99f6b1bacd85674c9

FINDINGS & TECH DETAILS

3.2

(HAL-02) UNENCRYPTED USER

PASSWORD IN-MEMORY -

Description:

The user password in the wallet was not encrypted in memory for Wigwam

Wallet.

As a result, an attacker who had compromised the user’s machine

could exfiltrate and steal the Mnemonic Phrase.

Proof of concept:

The plain text user password was available in memory during various

scenarios. Memory dumps were taken throughout the testing process. These

memory dumps contained an exact replica of what was in memory while the

application was open.

Searching among all the memory dump strings, the plain text user password

appeared in the following scenarios:

® Case I: New wallet created, wallet unlocked:

1014131
1014132
1014133

1014134
1014135
1014136
1014137
1014138
1014139
1014148
1014141
1014142

1814143

Figure

—eee mem e —eem— ———— e e e —y = = —p —— ——— 4=

"chrome-extension://lccbohhgfkdikahanoclbdmaclidjdfl/scripts/main.js”,

"about:blank”,

“lfunction(){\"use strict\";const t=new CSS5StyleSheet;t.replaceSync(’/*\\n * Copyright 2019 Ti
governed by a BSD-style license that can be\\n * found in the LICENSE file.\\n */\\n\\nbody {'
#222;\\n}\\n\\nbody.platform-linux {\\n font-family: Roboto, Ubuntu, Arial, sans-serif;\\n}\’
\".SFNSDisplay-Regular\™, \"Helvetica Neue\", \"Lucida Grande\", sans-serif;\\n}\\n\\nbody.pl:
sans-serif;\\n}\\n\\n.fill {\\n position: absolute;\\n +top: @;\\n right: 8;\\n bottom: 8;’
display: none !important; /* stylelint-disable-line declaration-no-important */\\n}\\n');clas:
n{viewportSize={width:808,height:608};viewportSizeForMediaQueries;deviceScaleFactor=1;emulati¢
"offer”,

"library”™,

"junk",

"decide”,

"mix",

"[a-z0-91#$%& " *4 /=2~ ~{|}~.-]+@[2-20-9](?:[a-28-9-]{0,61}[a-20-9])2(2:\\.[a-z8-9] ([a-28-9-]{6.

"<svg xmlns=\"http://www.w3.0org/2008/svg\" viewBox=\"0 @ 64 64\" fill=\"none\" shape-rendering
licensed under \"CC BY 4.@\". f Remix of the original. - Created with dicebear.com</desc><met:
xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.0rg/1999/82/22-rdf-synt:
Draftbit</dc:title><dc:creator»<cc:Agent rdf:about=\"https://draftbit.com/\"><dc:title>Draftb
https://personas.draftbit.com/</dc:source><cc:license rdf:resource=\"https://creativecommons.t
id=\"viewboxMask\"><rect width=\"64\" height=\"64\" rx=\"0\" ry=\"0\" x=\"0\" y=\"@\" fill=\"{
Bv-5.92A14.04 14.04 @ @ 1 18.58 37h-.08a4.5 4.5 @ @ 1-.5-8.97V27a3l14 14 @ 1 1 28 0v1.03a4.5 4.!
"@xCB8d9AaD730987d29276124D1b12AFDB6eDa91f91",

3: User wallet password leaked from Chrome memory dump - Case I

20

FINDINGS & TECH DETAILS

® Case II: Wallet just unlocked with by introducing the password (no

copy-paste):

1931685
1831686
1931687
1831688

1831689
1931690
1831691
1931692
1831693
1931694
1831695
1931696
1831697
1931698
1831699
1831708
1831761
1831702
1831763
1831704
1831785
1831706

"mix",
"[a-zB-91#5%&" *4 /=34 “{|}~.-14@[2-208-9](?:[a-20-9-]{@,61}[a-28-9])2(2:\\.[a-28-9]([a-z0-9-]1{0,61}[a-2z0-9]) 2) *",
"tNgCS1DZQVGmain™,
“gsvg xmlns=\"http://www.w3.org/2008/svg\" viewBox=\"0 8 64 64\" fill=\"none\" shape-rendering=\"auto\"><desc>\"Pers
licensed under \"CC BY 4.@\". / Remix of the original. - Created with dicebear.com</desc><metadata xmlns:dc=\"http:/
xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:rdf=\"http://www.w3.0rg/1999/02/22-rdf-syntax-ns#\"><rdf:RDF><cc:W
Draftbit</dc:title><dc:creator><cc:Agent rdf:about=\"https://draftbit.com/\"><dc:title>Draftbit - draftbit.com<¢/dc:t
https://personas.draftbit.com/</dc:source><cc:license rdf:resource=\"https://creativecommons.org/licenses/by/4.8/\"
id=\"viewboxMask\"><rect width=\"64\" height=\"64\" rx=\"0\" ry=\"@0\" x=\"0\" y=\"O\" Ffill=\"#fff\" /></mask><g mask
@v-5.92A14.04 14.84 @ @ 1 18.58 37h-.88a4.5 4.5 @ @ 1-.5-8.97V27al4 14 8 1 1 28 6v1.93a4.5 4.5 8 8@ 1-.58 8.97A14.04
"@xC8d9AaD730987d29276f24D1b12AFDB6eDa91f91",
"absolute top-1/2 left-1/2 -translate-x-1/2 -translate-y-1/2",
“chrome-extension://lccbohhgfkdikahanoclbdmaolidjdfl/icons/network/ethereum.png™,
"NATIVE_@ _@e",

el mlsi i s
“chrome-extension://lccbohhgfkdikahanoclbdmaclidjdfl/icons/nativeToken/ethereum.png”,
"e,0a",
"1_0xC8d9AaD73@987d29276124D1b12AFDBEeDa91f91_NATIVE @ 0",
“system / Foreign”,
“native_bind",
“system / JSProxy",
"2158,79",
"2.158,79\uB0AB%",
"(concatenated string)”,
“system / Context",
"W-full h-full overscroll-y-contain pb-20 rounded-t-[.625rem] viewportBlock™,
"w-4 p-1",
"2,56",

Figure 4: User wallet password leaked from Chrome memory dump - Case II

® Case III: After introducing the password to reveal the private key,

wallet unlocked:

956423
956424

956425
956426
956427
956428
956429
956430
956431
956432
956433
956434
956435
956436
956437
956438
956439
956440
956441
956442

"tNgCS1DZQVGmain™,
"<svg xmlns=Y\"http://www.w3.org/2000/svg\" viewBox=\"0 @ 64 64\ fill=\"none\" shape-rendering=
under \"CC BY 4.8\". / Remix of the original. - Created with dicebear.com</desc><metadata xmlns

ns#\" xmlns:rdf=\"http://www.w3.0rg/1999/02/22 -rdf-syntax-ns#\"»<rdf:RDF><cc:Work><dc:title>Per
rdf:about=\"https://draftbit.com/\"><dc:title>Draftbit - draftbit.com</dc:title></cc:Agent></dc
rdf :resource=\"https: //creativecommons.org/licenses/by/4.8/\" /></cc:Work></rdf:RDF></metadata>
*®=\"0\" y=\"0\" Fill=\"#fFf\" /></mask><g mask=\"url(#viewboxMask)\"»<path d=\"M37 46.88V52a5 &
91128 0vl.03a4.5 4.5 8 @ 1-.58 8.97A14.04 14.64 6 0 1 ",
"@xCB8d9AaD730987d29276124D1b12AFDB6eDa91f91™,
"absolute top-1/2 left-1/2 -translate-x-1/2 -translate-y-1/2",
"chrome-extension://lccbohhgfkdikahanoclbdmaolidjdfl/icons/network/ethereum.png”,
"NATIVE_@ 8",

¥
"chrome-extension: f/lccbohhgfkdikahanoclbdmaolidjdfl/icons/nativeToken/ethereum.png”,
"w-4 p-1 transition py-© pt-5 pb-20",
“bg-white/[.@7] border border-brand-main/5 rounded-[.625rem] relative cursor-pointer w-2",
"system / Foreign”,
"native_bind",
"system / JSProxy”,
"(script line ends)”,
"1 @xC8d9AaD738987d29276f24D1b12AFDB6eDa91+91 NATIVE © @",
"n.d.M",
"system / BytecodehArray”,
“(source position table)”,
"(BASELINE code)™,
"(BASELINE instruction stream)”,

Figure 5: User wallet password leaked from Chrome memory dump - Case III

® Case IV: After introducing the password to reveal the private key,
wallet locked:

21

FINDINGS & TECH DETAILS

Figure 6: User wallet password leaked from Chrome memory dump - Case IV

® Case V: After introducing the password to reveal the mnemonic,
copied using button, wallet unlocked:

22

FINDINGS & TECH DETAILS

Figure 7: User wallet password leaked from Chrome memory dump - Case V

® Case VI: After introducing the password to reveal the mnemonic,
copied using button, wallet locked:

23

FINDINGS & TECH DETAILS

969153
969154

969155
969156
969157
969158
969159
969160
969161
969162
969163
969164
969165
969166
969167
969168
969169
9691760
969171
969172
969173
969174
969175
969176
969177

LY ew - angena ’
"tNgCS1DZQVGmain™,
"¢<svg xmlns=\"http://www.w3.0rg/2000/svg\" viewBox=\"8 @ 64 64\" fill=\"none\" shape-rendering
under \"CC BY 4.9\". / Remix of the original. - Created with dicebear.com</desc><metadata xmln
ns#\" xmlns:rdf=\"http://www.w3.0rg/1999/02/22-rdf-syntax-ns#\"><rdf:RDF><cc:Work><dc:title>Pe
rdf:about=\"https://draftbit.com/\"><dc:title>Draftbit - draftbit.com</dc:title></cc:Agent></d
rdf:resource=\"https://creativecommons.org/licenses/by/4.9/\" /></cc:Work></rdf:RDF></metadata
X=\"ON" y=\TON\" Fill=\T#FFF\" /></mask><g mask=\"url(#viewboxMask)\"><path d=\"M37 46.88V52a5
® 1128 0vl1.03a4.5 4.5 0 @ 1-.58 8.97A14.04 14.64 0 0 1 ",
"@xC8d9AaD730987d29276124D1b12AFDB6eDa91f91",

"absolute top-1/2 left-1/2 -translate-x-1/2 -translate-y-1/27,
"chrome-extension://lccbohhgfkdikahanoclbdmaolidjdfl/icons/network/ethereum.png”,
"NATIVE_@ 8",

S LIJ c JURNLM £ o gy e s T & o [V RA W L gy s YN LW S o L e o] Ly

"w-4 p-1 transition py-© pt-5 pb-28~,
"system / Foreign”,

"native_bind",

"system / JSProxy”,

"system / FeedbackVector”™,

"(code)”,

"(code deopt data)”,

"system / LoadHandler"”,

"system / CallHandlerInfo",

"system / FunctionTemplateRareData",
"(code for validate)™,

"(instruction stream for validate)"”,
".validate”,

"(concatenated string)”,

"(code for render)”,

"(instruction stream for render)”,

Figure 8: User wallet password leaked from Chrome memory dump - Case VI

CVSS Vector:

® CVSS:3.1/AV:P/AC:H/PR:L/UI:R/S:U/C:H/I:H/A:N

Risk Level:

Likelihood - 4
Impact - 4

Recommendation:

The values of variables that store sensitive information should be

cleared/dereferenced in the code. This action will facilitate the removal

of data from memory by the garbage collector. In situations where the

data needs to be managed, an obfuscated variable can be utilized with a

function that will reconstruct the original data precisely at the point

where it is required.

24

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:P/AC:H/PR:L/UI:R/S:U/C:H/I:H/A:N

FINDINGS & TECH DETAILS

Remediation Plan:

SOLVED: Wigwam Team solved this issue in the following commit 1ID:
af2f322c83f3d14d27f956¢c99f6b1bacd85674c9

25

https://github.com/wigwamapp/local-wigwam/tree/af2f322c83f3d14d27f956c99f6b1bacd85674c9

FINDINGS & TECH DETAILS

3.3 (HAL-03) PLAIN TEXT CONNECTIONS
OVER HTTP - MEDIUM

Description:

This vulnerability arises when sensitive information is transmitted over
HTTP in plain text, 1lacking encryption. This exposes the data to
potentially eavesdropping and interception by malicious actors. Without
the protection of secure communication protocols such as HTTPS, sensitive
data, including login credentials and confidential information, becomes
susceptible to unauthorized access and compromise.

Code Location:

53 faucetUrls: [

54 "https://goerlifaucet.com”,

55 "https://goerli-faucet.slock.it",

56 "https://faucet.goerli.mudit.blog",

57 "http://fauceth.komputing.org?chain=5",
58 1,

59 infoUrl: "https://goerli.net/#about”,

60 1,

77 explorerUrls: [

78 "https://sepolia.etherscan.io”,

79 "https://sepolia.otterscan.io”,

80 1,

81 explorerApiUrl: "https://api-sepolia.etherscan.io/api”,

82 faucetUrls: ["http://fauceth.komputing.org?chain=11155111"1],
83 infoUrl: "https://sepolia.otterscan.io”,

84 1,

85 1;

26

FINDINGS & TECH DETAILS

8 export async function startInpageContentScript() {

9 try {

10 await browser.scripting.registerContentScripts ([
11 {

12 id: "inpage",

B matehes: ['files///x”, "http://a/x, httpsi//a/xtl,
14 js: ["scripts/inpage.js"],

15 runAt: "document_start”,

16 allFrames: true,

17 ["world” as any]: "MAIN",

18 3,

19 1;

24 "host_permissions”: [

5 hwpo/localhostissas,
26 "file://x/*x",

A hewersse,
28 "https://*x/*"

29 1,

67 "content_scripts”: [

68 {

9 matches”: [files//e/xt, Thttp://e/et, Thttpsi//a/e'l,
70 "js": ["scripts/content.js"],
71 "run_at": "document_start",
72 "all_frames": true

73 3,

74 {

75 "matches”: ["{{website}}/x"],
76 "js": ["scripts/version. js"],
77 "run_at"”: "document_start"”

78 }

79]

80 3}

27

FINDINGS & TECH DETAILS

CVSS Vector:

®* 5.5 - Medium CVSS:3.0/AV:N/AC:L/PR:N/UIL:R/S:U/C:L/I:L/A:L/E:U/RL:0/RC:C

Risk Level:

Likelihood - 2
Impact - 4

Recommendation:

Ensure that every connection that the wallet makes is over HTTPS and
encrypted channels.

Remediation Plan:

SOLVED: The Wigwam team solved this issue in the following GitHub Pull
Request: https://github.com/wigwamapp/local-wigwam/pull/374

11 export function forceHttps(source: string) {

12 return source.replace("http://", "https://");
13 3}

14

28

https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:L/A:L/E:U/RL:O/RC:C
https://github.com/wigwamapp/local-wigwam/pull/374

FINDINGS & TECH DETAILS

3.4 (HAL-04) LACK OF USER INPUT
SANITATION - MEDIUM

Description:

The user inputs are not properly sanitized or validated, exposing the
system to potential malicious activities. 1In such cases, an attacker
may exploit this weakness by injecting malicious input, leading to
various security risks, including but not limited to code injection, SQL
injection, or other forms of attacks that manipulate the application’s

intended behavior.

Proof of Concept:

Wigwam Wallet did not validate properly the RPC URL field in the Wallet
Settings Page, allowing values with malicious payloads, like empty links,
XSS payloads, and causing the application crash.

& Control . Lock

Qg X @4 Edit network

Network Name
@ Add new network

Goerli Ethereum Testnet

& Gnosis
RPC URL
< Goerli Ethereum Test... >
http://goerasdfasdfasdfasdflkjg.com">
X X <script>alert(1)</script>
PG Gnosis Chiado Testnet & Paste
Chain ID

or Optimism Testnet Go...

Figure 9: RPC URL with Cross-Site Scripting payload (I)

29

FINDINGS & TECH DETAILS

2 Control . Lock

Qg X @ Edit network

Network Name
(® Add new network

i Goerli Ethereum Testnet
& Gnosis
RPC URL

< Goerli Ethereum Test... >
http:/["><script>alert(1)</script>

®.c Gnosis Chiado Testnet (@ Paste

Figure 10: RPC URL with Cross-Site Scripting payload (II)

30

FINDINGS & TECH DETAILS

& Control . Lock

@ Edit network

Network Name

Goerli Ethereum Testnet

RPC URL
http://
@ Paste
Chain ID
5
Figure 11: Empty RPC URL
& Control @& Lock

Qg X

(¥) Network "Goerli Ethereum
Testnet" successfully updated!

(® Add new network

& Gnosis

< Goerli Ethereum Test... >

Figure 12: Changes saved successfully

X

31

FINDINGS & TECH DETAILS

Goerli Ethereum Testnet v 2 Control ﬂ Lock

2+ Add wallet

Carterala
Q Oxcd5A...2286 O
0'00 $ @ Cartera 3 Cartera 2 Cartera 4
(AR 0,00$! 0,00$ 4 000$
X
© Asse Error

Internal JSON-RPC error.
Send NFTs
tokens suc “

Estimation failed. Transaction may fail or there
network issues

Figure 13: JSON-RPC error when interacting with the wallet

This issue was re-escalated to Medium instead of High because no further
exploitation was achieved after testing several malicious payloads.
However, it is important to not allow this kind of dangerous characters
and payloads to be configured by users.

CVSS Vector:

® 4.9 - Medium CVSS:3.0/AV:N/AC:H/PR:N/UL:N/S:U/C:L/I:L/A:L/E:U/RL:0/RC:C

Risk Level:

Likelihood - 3
Impact - 3

Recommendation:

® Input Validation: Implement robust input validation mechanisms to
ensure that user inputs adhere to expected formats and constraints.
Utilize server-side validation as the primary line of defense against

malicious input.

® Parameterized Queries: When interacting with databases, utilize

https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:L/E:U/RL:O/RC:C

FINDINGS & TECH DETAILS

parameterized queries or prepared statements to prevent SQL injection
attacks. This ensures that user input is treated as data rather than
executable code.

Output Encoding: Apply proper output encoding techniques to sanitize
user inputs before rendering them in the user interface. This
helps prevent cross-site scripting (XSS) attacks by neutralizing
potentially harmful scripts.

® Security Headers: Implement security headers, such as Content
Security Policy (CSP), to mitigate risks associated with code
injection and other client-side attacks.

Remediation Plan:

SOLVED: The Wigwam team solved this issue in the following GitHub Pull
Request: https://github.com/wigwamapp/local-wigwam/pull/374

https://github.com/wigwamapp/local-wigwam/pull/374

FINDINGS & TECH DETAILS

3.5 (HAL-05) PACKAGES WITH KNOWN
VULNERABILITIES - MEDIUM

Description:

Wigwam Wallet used multiple third-party dependencies. However, some of
them were affected by public-known vulnerabilities that may pose a risk
to the global application security level. Although performed tests were
mainly carried out from a black-box perspective, multiple vulnerable
dependencies were found during the code review phase. Halborn considered
them to be reported.

In the image below, it is possible to observe the output from snyk test
command, showing some vulnerable package dependencies.

Testing /media/_share/_wigwam/local-wigwam-31618e9a64ab8d584f2997743cca3f17b745¢bes5. ..

Tested 319 dependencies for known issues,

Issues with no direct upgrade or patch:
X Missing Release of Resource after Effective Lifetime [Medium Severity][https://snyk.io/vuln/SNYK-JS-INFLIGHT-6@95116] in inflight@l.0.6
introduced by gdicebear/coreg7.0.1 > gdicebear/converterg?.@.1 > tmp-promiseg3.@.3 > tmpge.2.1 > rimrafg3.0.2 > globg7.2.3 > inflightgl.0.6
No upgrade or patch available

Figure 14: Vulnerable dependencies for Wigwam wallet (I)

Besides, in the following pictures, it is possible to observe the output
from yarn audit command, showing more vulnerable package dependencies.

34

FINDINGS & TECH DETAILS

L $ yarn audit
yarn audit v1.22.19

moderate madobe/css-tools Improper Input Validation and Inefficient
Regular Expression Complexity

Package gadobe/css-tools

Patched in »=4.3.2

Dependency of | gtesting-library/jest-dom

Path atesting-library/jest-dom > gadobe/css-tools

More info https://www.npmjs.com/advisories/1095152

vulnerabilities found - Packages audited: 1376
Severity: 1 Moderate
Done in 3.83s.

Figure 15: Vulnerable dependencies for Wigwam wallet (II)

CVSS Vector:

® 4.1 - Medium CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:C/C:N/I:L/A:L/E:U/RL:0/RC:C

Risk Level:

Likelihood - 3
Impact - 3

Recommendation:

Update all affected packages to the latest version. It is also recommended
to conduct an automated analysis of the dependencies from the inception of
the project to determine potential security issues. Developers need to be
aware of these potential risks and implement appropriate countermeasures
to safeguard the affected application.

Remediation Plan:

SOLVED: The Wigwam team solved this issue in the following GitHub Pull
Request: https://github.com/wigwamapp/local-wigwam/pull/381

https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:H/PR:N/UI:R/S:C/C:N/I:L/A:L/E:U/RL:O/RC:C
https://github.com/wigwamapp/local-wigwam/pull/381

FINDINGS & TECH DETAILS

3.6 (HAL-06) EXCESSIVE TIME FOR
WALLET AUTO-LOCK - MEDIUM

Description:

Wigwam Wallet had an excessive auto-lock time period set by default.
During the analysis, it has been identified that the auto-lock timer was
set up to one week by default. Setting the auto-lock time to that high
amount of time, diminishes the purpose of this extra auto lock security
feature.

Code Location:

18 export const DEFAULT_AUTO_LOCK_TIMEOUT = ONE_WEEK;

It was also checked that there were more values for the LOCK_TIMEOUTS, but
Halborn did not detect any functionality from the wallet GUI to configure
them:

7 export const AUTO_LOCK_TIMEOUTS: number[] = [
8 0, // off

9 60_000 * 5, // 5 min

10 60_000 *= 15, // 15 min

11 ONE_HOUR, // 1 hour

12 ONE_HOUR * 3, // 3 hours

13 ONE_DAY, // 1 day

14 ONE_DAY * 2, // 2 days

15 ONE_WEEK, // 1 week

16 1;

CVSS Vector:

® 5.4 - Medium CVSS:3.0/AV:L/AC:L/PR:N/UL:N/S:U/C:H/I:N/A:N/E:U/RL:0/RC:C

36

https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N/E:U/RL:O/RC:C

FINDINGS & TECH DETAILS

Risk Level:

Likelihood - 3
Impact - 3

Recommendation:

Check the activity on the extension and set up an auto-lock functionality
if the wallet extension has not been actively used for a while.

Remediation Plan:

SOLVED: The Wigwam team solved this issue in the following GitHub Pull
Request: https://github.com/wigwamapp/local-wigwam/pull/374

8 export const AUTO_LOCK_TIMEOUTS = new Map (L
9 [0, "None"],

10 [60_000 * 5, "5 min"],

11 [60_000 * 15, "15 min"],

12 [ONE_HOUR, "1 hour"],

13 [ONE_HOUR * 3, "3 hours"],

14 [ONE_DAY, "1 day"],

15 [TWO_DAYS * 2, "2 days"],

16 [ONE_WEEK, "1 week"],

17 1);

18

19 export const DEFAULT_AUTO_LOCK_TIMEOUT = TWO_DAYS;

37

https://github.com/wigwamapp/local-wigwam/pull/374

FINDINGS & TECH DETAILS

3.7 (HAL-07) INSECURE
AUTHENTICATION METHODS - LOW

Description:

Wigwam Wallet used HTTP Basic Authentication as the source code revealed.
Basic HTTP authentication transmits credentials in an easily decipherable
format, exposing sensitive user information to potential interception
and unauthorized access. This vulnerability poses a significant security
risk as it allowed malicious actors to capture and exploit authentication
credentials, compromising the confidentiality of user accounts.

Proof of Concept:

90 function createRequest(config) {

91 const headers = new Headers(config.headers.toJSON());
92

93 // HTTP basic authentication

94 if (config.auth) {

95 const username = config.auth.username || "";

96 const password = config.auth.password

97 ? decodeURI(encodeURIComponent (config.auth.password))

98 "

99 headers.set("Authorization”, ‘Basic ${btoa(username + ":" +
L, password)}‘);
100 3

CVSS Vector:

® 3.8 -Low CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:N/A:N/E:U/RL:0/RC:C

Risk Level:

Likelihood - 1

38

https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:N/A:N/E:U/RL:O/RC:C

FINDINGS & TECH DETAILS

Impact - 3

Recommendation:

Implement secure authentication methods and avoid using authentication
methods that transmit credentials in plaintext.

Remediation Plan:

SOLVED: The Wigwam team solved this issue in the following GitHub Commit
ID: 78c6c0ak4d41d11b6fd6dddfe461cbdd5c1e04d4

90 function createRequest(config) {

91 const headers = new Headers(config.headers.toJSON());

92

93 // HTTP basic authentication

94 if (config.auth) {

95 throw new Error("Basic auth is not supported. Use a different
L, behaviour");

96

97 // const username = config.auth.username || "";

98 // const password = config.auth.password

99 // ? decodeURI (encodeURIComponent (config.auth.password))
100 // HE
101 // headers.set("Authorization”, ‘Basic ${btoa(username + ":" +

L, password)}‘);
102}

39

https://github.com/wigwamapp/local-wigwam/tree/78c6c0a04d41d11b6fd6dddfe461cbdd5c1e04d4

FINDINGS & TECH DETAILS

3.8 (HAL-08) LACK OF DEFAULT CLAUSE
ON SWITCH STATEMENT - LOW

Description:

Some switch statements were detected with lack of default clause. This
may pose a risk for the application because if a non contemplated value
is passed to the application, this may cause unexpected and unstable
behavior of the application, rendering it unusable in the worst cases
(DoS) .

Source Code Snippets:

40

FINDINGS & TECH DETAILS

10 window.addEventListener (

11 "message",

12 (evt) => {

13 if (

14 evt.source === window &&

15 evt.origin === location.origin &&
16 evt.data?.salt === salt

17) {

B switeh (evedstatwpe) €
19 case "wigwam.reply"”:

20 ext.runtime.sendMessage ({

21 type: "__APPLY_WEBSITE_DATA",
vy data: evt.data.data,

23 DN

24 break;

25

26 case "wigwam.openapp":

27 ext.runtime.sendMessage ({ type: "__OPEN_OR_FOCUS_TAB" })
L

28 break;

29 }

30 }

31 1,

32 false,

33);

548 const getSociallcon = (social: SocialProvider) => {
550 case "google":

551 return Googlelcon;
552 case "facebook"”:

553 return FacebookIcon;
554 case "twitter"”:

51515 return TwitterIcon;
556 case "reddit":

557 return RedditIcon;
558 }

559 };

FINDINGS & TECH DETAILS

378 switch (standard) {

379 case TokenStandard.ERC20:
380 {
381 const contract = ERC20__factory.connect(

L, address, signer);
382

383 gasLimit = await contract.transfer.
L, estimateGas(

384 recipientAddr,

385 value,

386);

387 }

388 break;

389

390 case TokenStandard.ERC721:

391 {

392 const contract = ERC721__factory.connect(
L, address, signer);

393

394 gasLimit = await contract.transferFrom.
L, estimateGas(

395 currentAccount.address,

396 recipientAddr,

397 id,

398)

399 3}

400 break;

401

402 case TokenStandard.ERC1155:

403 {

404 const contract = ERC1155__factory.connect(

405 address,

406 signer,

407);

408

409 gasLimit = await contract.safeTransferFrom.
L, estimateGas(

410 currentAccount . address,

411 recipientAddr,

412 id,

413 value,

414 new Uint8Array (),

42

FINDINGS & TECH DETAILS

415)

416 }

417 break;

418 }

419 }

105 function generateDicebearIconSvg(type: DicebearStyleType,
L, string) {

106 switch (type) {

107 case "avataaars':

108 return createAvatar (avataaarsStyle, {

109 seed,

110 mouth: [

111 "default”,

112 "disbelief”,

113 "eating",

114 "grimace",

115 "screamOpen",

116 "serious",

117 "smile",

118 "tongue”,

119 "twinkle",

120 1

121 }).toString();

122

123 case "personas":

124 return createAvatar(personasStyle, {

125 seed,

126 }) . toString();

127 }

128 %}

seed:

28 const handleClick useCallback<MouseEventHandler<

L, HTMLButtonElement >>(

29 async (evt) => {

30 if (onClick) {

31 await onClick(evt);

32 if (evt.defaultPrevented) {
33 return;

43

FINDINGS & TECH DETAILS

34 3

35 3}

36

S ek Gree ¢
38 case historyPosition > @:

39 goBack () ;

40 break;

41

42 case !inHome:

43 setCurrentValue([initialValue, "replace”]);
44 break;

45 }

46 3,

47 [onClick, historyPosition, initialValue, inHome,
L, setCurrentValuel,

48 DE

67 const getIcon = (wallet: Account) => {

68 if (wallet.source === AccountSource.OpenLogin) {
s suiteh (wlletsocialy ¢
70 case "google":

71 return Googlelcon;

72 case "facebook”:

73 return FacebookIcon;

74 case "twitter"”:

7% return TwitterIcon;

76 case "reddit":

77 return RedditIcon;

78 3}

79 3}

66 const message = useMemo(() => {
67 try {

case SigningStandard.PersonalSign:

70 try {

71 return toUtf8String(approval.message);
72 } catch {

73 return approval.message;

44

FINDINGS & TECH DETAILS

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

case SigningStandard.SignTypedDataVl:

return approval.message;

case SigningStandard.SignTypedDataV3:

case SigningStandard.SignTypedDataV4:

return JSON.parse(approval.message);

3

} catch (err) {
console.error(err);

return null;

}, Lapprovall);

108
109
110
111
112
113
114
115
116
117
118
119

120
121
122
123
124
125
126
127
128
129
130

switch (approval.standard) {

is supported”,

case SigningStandard.PersonalSign:
sig = await ledgerEth.signPersonalMessage (
account.derivationPath,
hexlify (approval.message).substring(2),
);

break;

case SigningStandard.SignTypedDataV1:
case SigningStandard.SignTypedDataV3:
throw new Error(
"Ledger: Only version 4 of typed data signing

)5

case SigningStandard.SignTypedDataV4:
let domainSeparatorHex, hashStructMessageHex;

try {
const {

domain,

types,

primaryType,

message: sanitizedMessage,

45

FINDINGS & TECH DETAILS

131
132
133
134
135

136
137
138
139
140
141
L, hashStruct(
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

} = TypedDataUtils.sanitizeData(
JSON.parse (approval .message),

)5

domainSeparatorHex = TypedDataUtils.hashStruct

"EIP712Domain”,

domain,

types,

SignTypedDataVersion.V4,
).toString ("hex");
hashStructMessageHex = TypedDataUtils.

primaryType as any,
sanitizedMessage,
types,
SignTypedDataVersion.V4,
).toString("hex");
} catch {
throw new Error("Invalid message”);

sig = await ledgerEth.signEIP712HashedMessage (

account.derivationPath,

domainSeparatorHex,

hashStructMessageHex ,
);

break;

159 if (sig) {
160
161
162
163
164
165
166
167
168

signedMessage = ethers.Signature.from({
vV: sig.v,
r: "ox" + sig.r,
s: "ox" + sig.s,

}) .serialized;

let addressSignedWith: string | undefined;

switch (approval.standard) {

46

FINDINGS & TECH DETAILS

169 case SigningStandard.PersonalSign:

170 addressSignedWith = recoverPersonalSignature ({

171 data: message,

172 signature: signedMessage,

173 3D

174 break;

175

176 case SigningStandard.SignTypedDataV4:

177 addressSignedWith = recoverTypedSignature ({

178 version: SignTypedDataVersion.V4,

179 data: message,

180 signature: signedMessage,

181 1)

182 break;

183 }

184

185 if (

186 getAddress (addressSignedWith!) !== getAddress(
L, account.address)

187) {

188 throw new Error(

189 "Ledger: The signature doesnt match the right
L, address”,

190);

191 }

192

193 } catch (err) {

194 ledgerError = err;

195 3

196 i

292 useEffect(() => {

293 if (laction) return;

294

295 switch (action.type) {

296 case TxActionType.TokenTransfer:

297 action. tokens.forEach(({ slug }) => {

298 findToken(chainId, accountAddress, slug);

2% 125

300 break;

47

FINDINGS & TECH DETAILS

301

302 case TxActionType.TokenApprove:

303 if (action.tokenSlug) {

304 findToken(chainId, accountAddress, action.tokenSlug);
305 }

306 break;

307 3

308 }, [action, chainId, accountAddress]);

oewiteh (standard)

31 case SigningStandard.EthSign:

32 throw ethErrors.provider.unsupportedMethod();
33

34 case SigningStandard.PersonalSign:

35 accountAddress = params[1];

36 message = params[0];

37

38 if (!isAddress(accountAddress)) {
39 accountAddress = params[0];

40 message = params[1];

41 }

42 break;

43

44 case SigningStandard.SignTypedDataVl:
45 accountAddress = params[1];

46 message = params[0Q];

47 break;

48

49 case SigningStandard.SignTypedDataV3:
50 case SigningStandard.SignTypedDataV4:

51 accountAddress = params[0];
52 message = params[1];

53 break;

54}

56 try {
57 accountAddress = getAddress(accountAddress);
58

o switeh Geenderd €

FINDINGS & TECH DETAILS

60 case SigningStandard.PersonalSign:

61 message = isHexString(message)

62 ? message

63 : hexlify(toUtf8Bytes(message));

64 break;

65

66 case SigningStandard.SignTypedDataV1:

67 assert(

68 Array.isArray(message) &&

69 message.every (

70 (item: any) =>

71 typeof item.type === "string" &&
72 typeof item.name === "string" &&
73 typeof item.value === "string",
74),

75 W

76 break;

77

78 case SigningStandard.SignTypedDataV3:

79 case SigningStandard.SignTypedDataV4:

80 assert (

81 message &&

82 typeof message === "string" &&

83 typeof JSON.parse(message) === "object”,
84)¢

85 break;

86 3}

87 } catch {
88 throw ethErrors.rpc.invalidParams();
89 }

85 internalStateSubs.set(port, (type) => {

86 const perm = currentPermission;

87

88 switch (type) {

89 case "walletStatus":

90 notifyPermission(port, perm);

91 resolveConnectionApproval (perm);
92 break;

93

94 case "chainId”:

95 if (!perm) notifyPermission(port);

49

FINDINGS & TECH DETAILS

96
97
98
99
100
101
102

break;

case "accountAddress”:
if (perm) notifyPermission(port, perm);
break;
3
s

29 try {

L, provi

L, null)

30 switch (standard) {

case TokenStandard.ERC20: {
const contract = ERC20__factory.connect(tokenAddress,
der);

return await retry/(
O =
props ({
decimals: contract.decimals(),
symbol: contract.symbol (),
name: contract.name(),
b,
{ retries: 2 },

)

case TokenStandard.ERC721:
case TokenStandard.ERC1155: {
const agent = new NFTMetadataAgent(chainId, provider);

const [contractName, parsed] = await Promise.all([
standard === TokenStandard.ERC721
? ERC721__factory.connect(tokenAddress, provider)
.name ()
.catch(() => null)
null,

agent.fetchMetadata(tokenAddress, tokenId).catch(()

)

1)

if (!returnBroken && !parsed) {
return null;

=>

50

FINDINGS & TECH DETAILS

61 const metadata: Partial<NFT> = omitEmptyFields ({

62 contractAddress: tokenAddress,

63 tokenId: tokenId,

64 name :

65 parsed?.name ??

66 *${contractName ? ‘${contractNamel} * : ""3}#${tokenId}",
67 collectionName: contractName ?? undefined,

68 collectionId: contractName ? slugify(contractName)
L, undefined,

69 description: parsed?.description,

70 thumbnailUrl: parsed?.imageURL,

71 contentUrl: parsed?.contentURL,

72 detailUrl: parsed?.externalURL,

73 contentType: parseContentType(parsed?.contentURLMimeType)
L,

74 attributes: parsed?.attributes as any,

75 1)

76

77 return metadata;

78 }

79 3}

80 } catch (err) {

81 console.error(err);

82 1}

460 switch (source) {

461 case AccountSource.SeedPhrase: {

462 const { derivationPath } = params;

463

464 const rootHDNode = getRootHDNode ();

465 const { address, privateKey, publicKey } =
466 rootHDNode .derivePath(derivationPath);
467

468 const account: HDAccount = {

469 ...base,

470 source,

471 address,

472 derivationPath,

473 };

474

475 const keys: AccountKeys = {

476 privateKey: ProtectedValue.fromString(privateKey),

FINDINGS & TECH DETAILS

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

publicKey: ProtectedValue.fromString(publicKey),
};

return { account, keys };

case AccountSource.PrivateKey: {
const privateKey = addox(
importProtected(params.privateKey).getText (),
)
const publicKey = ethers.SigningKey.computePublicKey (
privateKey,

true,
)
const address = ethers.computeAddress(publicKey);
const account: PrivateKeyAccount = {
...base,
source,
address,
)i §
const keys: AccountKeys = {

privateKey: ProtectedValue.fromString(privateKey),
publicKey: ProtectedValue.fromString(publicKey),

};

return { account, keys };

case AccountSource.OpenLogin: {

const privateKey = addox(
importProtected(params.privateKey).getText (),

)

const publicKey = ethers.SigningKey.computePublicKey (
privateKey,
true,

)

const address = ethers.computeAddress(publicKey);

const { social, socialName, socialEmail } = params;

const account: SocialAccount = {
...base,

52

FINDINGS & TECH DETAILS

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
5157/
558
559
560
561
562
563
564

source,
address,
social,
socialName,
socialEmail ,

3

const keys: AccountKeys = {
privateKey: ProtectedValue.fromString(privateKey),
publicKey: ProtectedValue.fromString(publicKey),

3

return { account, keys };

case AccountSource.lLedger: {
const derivationPath = params.derivationPath;
const publicKey = ethers.SigningKey.computePublicKey (
add@x (importProtected(params.publicKey).getText()),

true,
)i
const address = ethers.computeAddress(publicKey);
const account: LedgerAccount = {

...base,

source,

address,

derivationPath,

3

const keys: AccountKeys = {
publicKey: ProtectedValue.fromString(publicKey),

3

return { account, keys };

case AccountSource.Address: {
let { address } = params;

address = ethers.getAddress(address);
const account: WatchOnlyAccount = {
...base,

53

FINDINGS & TECH DETAILS

565 source,

566 address,

567 T

568

569 const keys: AccountKeys = {};
570

571 return { account, keys };

572 3

573 3

574 });

17 switch (params.source) {

18 case AccountSource.SeedPhrase:

19 validateDerivationPath (params.derivationPath);

20 break;

21

22 case AccountSource.lLedger:

23 validateDerivationPath (params.derivationPath);

24 validatePublicKey (fromProtectedString(params.publicKey));
25 break;

26

27 case AccountSource.PrivateKey:

28 case AccountSource.OpenlLogin:

29 validatePrivateKey (fromProtectedString(params.privateKey));
30 break;

31

32 case AccountSource.Address:

33 validateAddress (params.address);

34 break;

35}

36 }

o switeh (standard) €
19 case TokenStandard.ERC20: {

20 const contract = ERC20__factory.connect(address, provider)
Lo

21

22 return await contract.balanceOf (accountAddress);

23 }

54

FINDINGS & TECH DETAILS

case TokenStandard.ERC721: {
const contract = ERC721__factory.connect(address, provider
)
const owner = await contract.ownerOf (id);
return ethers.getAddress(owner) === accountAddress ? 1n
on;
}
case TokenStandard.ERC1155: {
const contract = ERC1155__factory.connect(address,
provider);
return await contract.balanceOf (accountAddress, id);
}

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

76 return new Promise((resolve, reject) => {

const handleMessage = (msg: any) => {
switch (true) {
case msg?.reqld !== reqld:
return;

case msg?.type === PorterMessageType.Res:
resolve(msg.data);
break;

case msg?.type === PorterMessageType.Err:

reject(deserializeError(msg.data));
break;

cleanup();

CVSS Vector:

3.5 - Low CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L/E:U/RL:0/RC:

55

https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L/E:U/RL:O/RC:C

FINDINGS & TECH DETAILS

Risk Level:
Likelihood - 2
Impact - 2
Recommendation:

According to coding best practices, default clause should be added to
every switch statement to avoid unexpected and unpredictable application
behaviors.

Remediation Plan:

SOLVED: The Wigwam team solved this issue in the following GitHub Pull
Request: https://github.com/wigwamapp/local-wigwam/pull/374

56

https://github.com/wigwamapp/local-wigwam/pull/374

FINDINGS & TECH DETAILS

3.9 (HAL-09) OLD PASSWORD
RE-USAGE - LOW

Description:

A user could repetitively set up previously used passwords after
changing them. This vulnerability arises from users reverting to
familiar, potentially compromised, or weak passwords when updating their
credentials. It introduces a security risk as attackers may exploit
patterns in password reuse over time, compromising the security of user
accounts.

Proof of Concept:

&= Control . Lock
a U

C Regenerate

Change password
Old password

12345Aal! LN

New password

12345Aal N
1 upper letter 1 lower letter 1 number
8 symbols special characters

Confirm new password

12345Aal! L)

Figure 16: Setting up the old password as new one

57

FINDINGS & TECH DETAILS

& Control . Lock

updated!

' _ () Profile password successfully X
Save

C Regenerate

Change password

Old password

ek o ok ok o ok &
New password

ok ok ek ok &,
Confirm new password

she 3k ok o o e 3K K Q

Figure 17: Setting up the old password as new one. Changes confirmed

CVSS Vector:

® 2.1 -Low CVSS:3.0/AV:P/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N/E:U/RL:0/RC:C

Risk Level:

Likelihood - 2
Impact - 2

Recommendation:

Implement a password history policy that prohibits users from reusing a
certain number of their most recent passwords. This prevents users from
reverting to old passwords and enhances overall security.

58

https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:P/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N/E:U/RL:O/RC:C

Remediation Plan:

SOLVED: The Wigwam team solved this issue in the following GitHub Pull
Request: https://github.com/wigwamapp/local-wigwam/pull/374

FINDINGS & TECH DETAILS

@ wiewam @ ctrereum v = Control @ Lok
Frome name
B overview @ General Perfil 1
Control display and appearance.
¥ R ive Language, currency etc.
¢ Transfer & Profile ¢ Regenerate
Update profile name or avatar. Change 2
profile password.
> Swap (Soon)
) @ Security & Privacy Change password
. Apps (Soon Back up your current Secret Phrase and
the ity il .
other security settings. ol
® contacts
[Web3 123456Aa! Iy
Control access and permissions for
decentralized applications.
b New password
& Networks 123456Aal Iy
Add a new network or configure the
settings of an existing one. 1 upper letter | 1lower letter | 1number
-
© Wallets 8 symbols | | special characters
35 Advanced
& Settings Enable test networks and other Confirm new password

additional features.

© About

Check current Wigwam version. Find us
elsewhere.

Figure 18:

fi23456Aa! I

Shouldn't match the old password

Cannot re-use password

59

https://github.com/wigwamapp/local-wigwam/pull/374

FINDINGS & TECH DETAILS

3.10 (HAL-10) BROKEN LINKS -
INFORMATIONAL

Description:

There were several broken links or deprecated websites in the Wigwam
wallet interface and workflows during the security assessment. Although
this is not a vulnerability itself, this type of issue could indicate a
poor code maturity or lack of maintenance.

Proof of Concept:

Goerli Ethereum Testnet:

®* http://fauceth.komputing.org/?chain=11155111
® https://faucet.goerli.mudit.blog/
®* https://goerli-faucet.slock.it redirected to https://www.

blockchains.com/
Huobi:

®* https://scan-testnet.hecochain.com/faucet

60

http://fauceth.komputing.org/?chain=11155111
https://faucet.goerli.mudit.blog/
https://goerli-faucet.slock.it
https://www.blockchains.com/
https://www.blockchains.com/
https://scan-testnet.hecochain.com/faucet

FINDINGS & TECH DETAILS

v Wigwam

CVSS

Risk

Overview
Receive
Transfer
Swap [Soon|
Apps (Soon)

Contacts

Wallets

Settings

Vector:

Figure 19:

<« Goerli Ethereum Testnet

Cartera1
! Oxcd5A...22B6 O
0,00%

@z @ & 0,001 GOR

Share address

View current wallet address. Share it or
use it on exchanges to receive funds.

% Faucet

Top up balance with testnet tokens for
free.

v

2+ Add wallet

0xcd5A47117a86a6Fe9E89180B03b49a2BB

1f922B6

O Copy

Use this wallet address to receive funds on faucets.

Faucets

goerlifaucet.com (7

goerli-faucet.slock.it (7

faucet.goerli.mudit.blog (2

fauceth.komputing.org [

Broken links in Faucet section

Informational CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:C/C:N/I:N/A:N/E:U/RL:0/RC:C

Level:

Likelihood - 1
Impact - 2

Recommendation:

Review the source code and update all broken/deprecated 1links to

third-party entities.

Remediation Plan:

ACKNOWLEDGED: The Wigwam team acknowledged this finding.

61

https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:C/C:N/I:N/A:N/E:U/RL:O/RC:C

PERFORMED TESTS

PERFORMED TESTS

4.1 STATIC ANALYSIS

Description:

Halborn used automated testing techniques to enhance the coverage of
certain areas of the scoped repositories. Among the tools used were
nodeJSscan and SonarQube. These tools used to assist with detection of
well-known security issues, and to identify low-hanging fruits on the
targets for this engagement.

NodeJSScan:

Part of the assessment was Static Code Analysis, which Halborn performed
using the NodeJSScan tool. NodeJSScan is a Static security code scanner
(SAST) specially built for Node.js applications.

NodeJSScan only discovered informational issues which do not pose any
risk for the Wigwam Wallet browser extension, or they do not apply for a

browser extension.

BASIC SCAN INFORMATION DISTRIUTION OF SEVERTY BY I SUETYPES NO OF FLES SCANNED VS
® Information @ Severity « Detections
(b]

oot
(uazsenct)
]
a5
[rypesstsaes’ 15
rronastisass) 15

Figure 20: NodeJSScan Results (I)

63

PERFORMED TESTS

Figure 21:

NodeJSScan Results (II)

64

PERFORMED TESTS

JavaScript Issues

Description: MD5 is a a weak hash which is known to have collision. Use a strong hashing function.

Severity: - (S
OWASP:
CWE: CWE-327: Use of a Broken or Risky Cryptographic algorithm

File: local-wigwam-31618e9a64ab8d584f2997743cca3f7b745cbes/ vendor/swe-jest/index s
Lines: [68,69]

return crypto
.createHash("md5")

Figure 22: NodeJSScan Results (III)

®* No major vulnerabilities were found by NodeJSscan.

SonarQube:

SonarQube results are not exportable. So Halborn would recommend running
the tool locally in the repository folder and check the interactive
results in the SonarQube web GUI.

®* Step 1: Run SonarQube locally

1 $ docker run -d --name sonarqube -e
L, SONAR_ES_BOOTSTRAP_CHECKS_DISABLE=true -p 9000:9000 sonarqube:
L, latest

® Step 2: Access the SonarQube web interface in http://localhost:9000
and create the scan

65

http://localhost:9000

PERFORMED TESTS

® Step 3: Launch the scan by running command provided in the SonarQube
web GUI within the project local folder
® Step 4: Check the results in the SonarQube web GUI.

66

THANK YOU FOR CHOOSING

// HALBORN

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	ASSESSMENT SUMMARY
	SCOPE
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Proof of Concept
	CVSS Vector
	Risk Level
	Recommendation
	References
	Remediation Plan

	
	Description
	Proof of concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Source Code Snippets
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	PERFORMED TESTS
	STATIC ANALYSIS
	Description
	NodeJSScan
	SonarQube

